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Climate Model Basics



An old saying....
“Climate is what you expect, weather is what you get”

= Climate is the average of weather.

= The average high temperature for today is calculated by taking the average of
several (usually 30) Aug 13t highs.

(T Aug13th | 1981) + (T Aug13t , 1982) + ... + (T Aug 13", 2010)
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From NWS site: “Please note, as of forecast May 2011, the climatological reference
period has been updated from 1971-2000 to 1981-2010”

To model the climate system, must model years of global weather



Need to simulate weather-scale phenomena over
the entire globe.
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Weather is embedded in the general circulation of the atmosphere
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The ocean also plays a role in determining the global climate




As does Sea Ice....




And the land surface
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As does Sea Ice....




Figure: U.S. Global Change Research Program



GCM: General Circulation Model

Solves the “primitive equations’, a set of non-linear PDEs which ultimately
derive from the Navier-Stokes equations.

Fundamental properties of geophysical fluids:
e Fluid is rotating
e Fluid is on a sphere
e Fluid is acted upon by gravity

Assumptions:
e Thin Stratified Fluid
e Hydrostatic
e Anelastic and Boussinesq (no sound waves, small aspect ratio, motions are shallow)

Derived in a non-inertial reference frame rotating with the Earth
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N |
The “Primitive equations” in spherical coordinates

momentum equations: / Coriolis force
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The “Primitive equations” continued

continuity equation:

L(1)=0
hydrostatic equation:

op _ _

82 - pg

equation of state:
p=p(0,5,p) = p(©,5,2) (0cean)

tracer transport:
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5% T L(p) = Du(p) + Dy () + F(t,u,v,phi)
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Heat forcing on the atmosphere: Radiation and
other. F(t,u,v,phi)

transpiration
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Longwave radiative flux in the 500-1500 cm-' band.
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Equations for the climate system must be solved numerically
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Atmospheric General Circulation Model

= Algorithms to solve the primitive equations called

= Forcing terms: F(t,u,v,phi)
e Change in temperature due to radiative transfer
e Fffect of clouds on radiative transfer
e Change in moisture due to cloud, rain formation

e Change in temperature due to sensible heat transport through the
boundary layer

e Change in temperature due to release of latent heat
e Change in momentum due to friction with surface.
— Algorithms for the above called

— Major groupings: longwave radiation, shortwave radiation,
boundary layer, deep convection, cloud fraction, gravity wave drag.

— Can take as much or more computer time as the dynamics and
also dominate the source code.
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Atmosphere Dynamics Example:
The Spectral Transform method:

N{m)

— 7Y )m f!“)i
(A p) = E E &Py

mem— M i

= State variable € is represented by a truncated series of spherical
harmonic functions.

— P: associated Legendre function
— A:longitude
— w: latitude
=  QOver 30 years old and still widely used.
= gka: Galerkin method with spherical harmonic basis functions.
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Other Numerical methods for Atmospheric GCM’ s

=  Finite Volume (FV)
— Temporarily succeed the spectral method
— Currently on a lat-lon grid; moving toward “cubed sphere”

= Finite element
— Just now gaining wide usage.
— Showing good scalability and performance.
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Ocean General Circulation Model
e YN B
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Walter H. F. Smith and David T. Sandwell, Seafloor Topography Version 4.0, SIO, September 26, 1996 Copyright 1996, Walter H. F. Smith and David T. Sandwell

=  Very Similar to AGCM except:
—  Presence of side boundaries. Nearly all OGCM’ s are FD with z-coordinates.
— Not as much “physics”
— Motions are slower. Length scales are shorter.
— Much higher heat capacity. The memory of the climate system is in the ocean.
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= Thermodynamics: formation, growth,
melting, albedo, melt ponds.

= Dynamics: transport, internal stress,
ridging

Showing a scene from a pressure ridge simulation. The thin ice 15 0.5 m thick and the thick
floe 1s 2 m thick.

JAN, 1994
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Land Surface Models

N

5
§ 2 =&
= L
: 0§ 2
s - ] I Momentum Flux
O o 14 - ! i
D = v L B Wind Speed -
O 25 © © o 0 u, _
Za > © = ad %))
R, % E & £
D S r

Reflected Solar
Radlatlon

Absorbed Solar
Radiation J

")
oo\@
o
Emitted Long-
wave Radiation
—» <4—
VOCS
ANV
*AM—AM-——  pPhotosynthesis
| |

Nearly all “physics”:

Vegetation composition, structure
Vertical heat transfer in soil.

Heat, radiation transfer between
ground, canopy and free atmosphere

Hydrology of canopy, snow, soil
moisture

River runoff

Historically, was part of column physics

g in the atmosphere model.
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é Figure: Bonan, NCAR
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Coupling

Figure: U.S. Global Change Research Program
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0 le of th ler: '
ne role of the coupler: merging Ocean Model

Atmosphere Model
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How the climate community builds a coupled model



Building a Coupled Climate Model:

Coupled Climate Models are almost never written from scratch. Use existing
Atmosphere, Ocean models.

Source code for each component (Atmosphere, Ocean) developed separately as a
standalone model.

— Source has different coding styles, conventions.

— Different internal data structures (for holding computed quantities like temperature.)
— Wasn't intended to output boundary data.

— But almost always the same programming language: Fortran.
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Put it all together with Argonne’s Model Coupling
Toolkit

Model Coupling Toolkit

MCT provides classes and methods to handle most of
the routine tasks of building a parallel coupler
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NSF/DOE Coupled Climate Model CCSM4/CESM1

Ocn
(POP 2.0)
320x384x40

Coupler
(cpl7)

Lnd
(CLM 4)
128x256x10

Ice
(CSIM 4)
320x384x5
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CESM Management

= Scientific Steering Committee: Sets goals major development. Monitors
progress.

= Community Advisory Board: “To provide advice to the SSC, the Director of
NCAR, the NSF-ATM Program Director, and the President of UCAR on a wide
spectrum of scientific and technical activities within or involving the CCSM”

=  CESM Working Groups

— Atmosphere Model; Ocean Model; Land Model; Polar Climate
Biogeochemistry; Chemistry-Climate; Paleoclimate;
Software Engineering; Climate Change; Climate Variability.

— Groups meet twice a year.

— Everyone meets at the CESM Workshop, June, Breckenridge (300-400 attendees).

www2.cesm.ucar.edu



Community Earth System Model Development

= Each sub-model has a group of expert users/developers for that discipline.

= Since the climate is created by the interaction of these systems, collaboration
was required early on. First CCSM workshop was 1996.

= Introduction of new code is not formalized.
— Typically you need to adapt to data structures already in place.
— Informal “bakeoffs” determine which of two algorithms provides better physical
simulation.
— Working groups steered by co-chairs.
— Working groups eventually reach consensus on new schemes.
e Examples: New deep convection scheme, POP2, new boundary layer scheme.

— NCAR internal CCSM Software Engineering Group makes many infrastructure
decisions.



Climate model construction is similar across globe.
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Parallelism and performance

Nearly all components are hybrid parallel (MPl and OpenMP).
— Load balancing CESM is hard

100-year simulation can take weeks of wallclock time. All climate model’s can
write/read checkpoint (restart) files.

Domain decomposition. Threads handle blocks of columns, several blocks per
MPI task. Adjust to fit cache.

Performance is very flat. No single kernel to optimize and gain a lot.

Some use of GPUs: For cases with lots of tracers, puting tracer advection on GPU
helps.
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Validating climate models against data
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The Data Problem:

= Take your coupled global climate model and calculate evolution of global weather
for 100 years, 20 minutes at at a time.

— CCSM3 (150km): 1 quadrillion operations/simulated year.

= After 100 quadrillion operations, what do you know about the climate?

NOTHING!



Climate is revealed by calculating statistics on
climate model output

" Averages over time and space.
= Other moments
" More sophisticated analysis: CCA, PCA, etc.

" Compare against same calculations done with
observations.



Climate model output practices

= Since running a model is very expensive AND
= Since the science comes from analyzing the output.

= Qutput everything!
— Prognostic state variables
— Derived quantities
— Approximately 100 different variables. 25% 3D, rest 2D or 1D.

= _...Butdon’tsave everything for all times

— Monthly output of all variables.
— Daily or 4-hourly output of some of the same variables.



Measuring the climate is not easy!

Should cover the whole planet from the bottom of the ocean to the top
of the atmosphere

Need to measure many variables

Must take measurements for decades.

We do not come close to meeting all these goals!



Atmospheric Radiation Measurement Program
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Satllites
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Shortcomings:
-Only a few years
-2D pictures
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Insight about climate comes mostly from computationally
undemanding (to plot) 2D and 1D figures.
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Why? The atmosphere and ocean have a small aspect ratio;
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NCAR Command Language (NCL)

A scripting language tailored for the analysis and visualization of geoscientific data

Simple, robust file input and output

Hundreds of analysis (computational)
functions

Visualizations (2D) are publication
quality and highly customizable

Community-based tool

Widely used by CESM developers/
users

UNIX binaries & source available, free

Extensive website, regular workshops

http://www.ncl.ucar.edu/

Original Grid

Regridded

2014.26m

Potential Temp. (°C)




AMWG Diagnostics

Set Description

1 Tables of ANN, DJF, JJA, global and regional means and RMSE.
2 Line plots of annual implied northward transports.

3 Line plots of DJF, JJA and ANN zonal means

4 Vertical contour plots of DJF, JJA and ANN zonal means

4a Vertical (XZ) contour plots of DJF, JJA and ANN meridional
means

5 Horizontal contour plots of DJF, JJA and ANN means

6 Horizontal vector plots of DJF, JJA and ANN means

7 Polar contour and vector plots of DJF, JJA and ANN means

8 Annual cycle contour plots of zonal means

9 Horizontal contour plots of DJF-JJA differences

10 Annual cycle line plots of global means

11 Pacific annual cycle, Scatter plot plots

12 Vertical profile plots from 17 selected stations

13 Cloud simulators plots

14 Taylor Diagram plots

15 Annual Cycle at Select Stations plots
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Climate Model Applications



Atmospheric pCO»2, ppm

Atmospheric pCO2, ppm
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Multi-model simulations of the 20th Century (IPCC AR4)
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Climate Prediction with CO2 increase (IPCC AR4)
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' models using both natural and anthropogenic forcings
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Future Considerations
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Resolving regional details about climate change

requires higher resolution (necessary but not
sufficient).
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Regional effects are important for key parts of the
system.
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-

Need high resolution for hurricanes - a vital part of
the climate system.

All tropical cyclone tracks 1985-2005. Tracks colored by max wind speed from weak (blue)
to red (strong)
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One Path to higher Resolution: Regionally refined
grids

Same dynamics throughout
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ACME: Accelerated Climate Model for Energy

Goal: Focus DOE modeling activities to develop a high resolution Earth System

Model (ESM) that effectively utilizes DOE expertise and computers and supports
DOE mission and science. Code for a slightly smaller community.

Branch from the Community Earth System Model beginning in 2014 to develop an
advanced version made available back to the community by 2017.

Primary science focus - Ultra-high
resolution 80 year simulations:

= 1970-2010 hindcast with automat
evaluation and calibration against
observations (like CSSEF project)

= 2010-2050 projection, with
uncertainty characterization.

Surface Warming °C

For next 20-40 years, climate change is
expected to be mostly independent of
scenario, with change determined by
system inertia (“change in the pipeline”)
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GLoBAL MEAN WARMING:
MoDeL PROJECTIONS COMPARED WITH OBSERVATIONS

wee FAR
= SAR
mess TAR
m—— (bserved

— A1B
~ — A2

. s Commitment

1985

1950

2005 2010 2015 2020 2025

Year

1995 2000

(4}
ay
19

WIANWWOD)




